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Two- Point Quasi- Fractional Approximations to 
the Airy Function Ai 

I. INTRODUCTION 

The Airy function appears very often in several areas of 
physics such as quantum mechanics, electrodynamics, 
plasma physics, etc. [l-3]. Although the WKB method 
provides a good approximation to the Airy function for 
large values of the independent variable, a simple expression 
valid throughout for every positive (or alternatively, 
negative) real x is not available. The two-point quasi- 
fractional approximation procedure recently published 
[4-73 shows a way to obtain simple approximations valid 
throughout the region of validity. 

The main idea is to establish a form of approximation 
such that the singularities of the approximation are 
coincident with those of the exact function in all the range 
of interest. In previous papers [4-61, the quasi-fractional 
approximations are defined in terms of the usual indepen- 
dent variable. However, in the Airy case, to obtain the 
coincidence of the singularities a change of variable has to 
be introduced and then the correct quasi-fractional form is 
found. The form of the approximation is different for the 
negative region than for the positive one. However, in a 
small region around the origin both forms are valid. 

In this paper we have obtained the simplest approxi- 
mation using first-degree polynomials, the accuracy is 
such that the approximated and the exact curves are 
indistinguishable when plotted on graph paper of standard 
size. More than two decimal place accuracy is obtained for 
all values of x. Higher order precision routines for Airy and 
their derivatives exist [S, 91. 

However, one important advantage of the approxima- 
tions obtained here is that they can be derived or used inside 
integrands by substituting the exact function in the whole 
real axis and the accuracy will suffice for many applications. 
Furthermore, the numerical computation of the approxima- 
tion can be obtained quickly and economically, even using 
a pocket calculator. While it is true that the power series for 
the exact Ai is convergent for all values of x and can be 
used for the numerical computation to any degree of 
accuracy; the number of terms to be used are numerous for 
intermediate or large values of x. Also the accuracy of the 
asymptotic expansions depend strongly on the value of x 

and it is not easy to find upper bounds. Our approximations 
are obtained using the leading terms of the asymptotic 
expansion and a suitable number of terms of the power 
series. However, the accuracy of the quasi-fractional 
approximation is higher than the accuracy of either the 
power or the asymptotic series calculated with the same 
number of terms as our approximations. 

In Section II we discuss the procedure to be used and 
the determination of the right independent variable. In 
Section III we determine the values of the parameters of the 
approximation and we discuss the results and the accuracy 
obtained as well as that of the WKB method (leading term 
of the asymptotic expansion) and partial power series. 
Section IV is devoted to general discussion and conclusions. 

II. THEORETICAL TREATMENT 

The Airy function Ai has an essential singularity 
at infinity. The asymptotic expansion shows the Stokes 
phenomenon, and the form is different for positive x than 
for negative x [7, 10-121. Besides, the power series is a sum 
of two series in terms of the variable x3. For real positive x 
the leading term is 

( 1/27P) x ~ 1’4 exp( -2x312/3 ). (1) 

From this expression and from the conditions imposed by 
the power expansion it could be concluded that a suitable 
variable is x3/2. However, this variable presents the problem 
of a branch point at zero, which is not present in the Airy 
exact function. Since this point is in the region of interest we 
have to slightly modify this variable to avoid this incon- 
venience. A simple way to do this is to choose the variable 
,/w, where A can be any positive number. This variable 
is inadequate, however, for negative x. Therefore a better 
choice valid for both regions is 

Z=Jm, (2) 

where 1 i and I, correspond to positive and negative values 
of x, respectively. 

Considering now the restrictions imposed by the power 
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series and by the asymptotic expansion, we have found the 
general form 

y,= i pizi+(x/z*‘3) i: PjZi 
( ) 

ex;:*;y3) 
i=O i=O 

(3) 

which has the right series expansion and also an adequate 
asymptotic behavior. In previous papers [&6] we define 
the denominator in terms of q-parameters to be determined 
together with the p-parameters of the numerator. However, 
this procedure sometimes causes undesirable zeros in the 
denominator without substantially improving the accuracy. 
The procedure presented here is more general than the 
previous one; we fix the denominator in the simplest way. 

The form of the approximation is valid also for small 
negative values of x which are not too close to the point 
x = - (A1 )lj3 (the branch point). For large negative values 
of x, we have to consider a different form due to the Stokes 
phenomenon. An analysis similar to the one mentioned 
above for positive x, leads to.an approximation of the form 

y, = t$o qizi Cos(2 Ixp2/3)/z”+ “6 

n 

Here we can choose directly Sin(2 1x1312/3) and 
Cos(2 l~1~“/3) instead of Sin(z) and Cos(z), because the 
functions 1x1 P3’2 Sin(2 1x1312/3) and Cos(2 1x1312/3) are even 
functions. Thus we have only even powers and therefore the 
branch point disappears. 

III. RESULTS 

The simplest case n = 1, leads to the expressions 

x exp( - 2213) if x20 (5) 

and 

Y,(x) = @g Cos(2 1x13/‘/3) 

+xQ~+QlzSW IxI~‘~/~) 
z5/6 lxl3’2 > 

(6) 

+ x tTo Qizi Sin(2 1x1 3’2/3)/( 1x1 312 zn- ‘/‘j). (4) 
if x < 0. 
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FIG. 1. (a) The maximum error as a function of 2, for ~30. (b) The absolute errors for our approximation with rr= 1 (full line), the WKB 
approximation (dashed line), and the partial power series (point-dash line) for x 3 0. (c) The relative errors for our approximation with n = 1 (full line), 
for the WKB approximation (dashed line), and for the partial power series (point-dash line) for x 3 0. 
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The asymptotic condition leads to the equations 

p1+ P, = 1/27P; q1 = 1/(2#2; Q, = -4,. (7) 

The first fraction in Eq. (5) will give the zeroth (ao) 
and the third (a,/6) degree terms of the Airy power series. 
The last equation for determining the four parameters 
pO,pl, P,, and P, is obtained by equating the first-degree 
terms of Eq. (5) and of the Airy power series (al). In this 
way all the p and P parameters are determined as functions 
of the parameter A, : 

p. + fip, = iy’12 exp(f fi) Ai(0) 

P, + fi P, = i:‘/l* exp($ fi) Ai’(0) 

(7+4~)p,+(1+4Jmlpl 

= - 22 t9/12 exp( + &,) Ai(0). 

(8) 

For the negative values, we have two equations coming 
from the asymptotic condition. Therefore we have to use 
only the zeroth (ao) and first (al) degree terms of the Airy 
power series. Thus we obtain 

q. + ,,& q1 = ,I:/” Ai(0) 
(9) 

Q. + fi Ql = (3/2) 12:/l* Ai’(0). 

If we choose a given value of Ar, i.e., A, = 1, we can deter- 
mine the error as a function of x. The approximations are 
very precise for small and large values of x. The maximum 
error occurs at intermediate values of x, i.e., in the region 
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FIG. 2. The absolute errors for our approximation with n = 1 (full 
line), the WKB approximation (dashed line), and the partial power series 
(point-dash line) for x 6 0. 

between 0.5 and 5. In order to determine the best li we 
decide to plot this maximum error as a function of Lj and to 
select the Li which gives the least maximum error. The 
results are shown in Fig. la for the positive region. In the 
negative region the pattern is similar. The best values 
obtained are 2, z 0.0425 and R, z 0.37. Using these values 
for A, and &, we obtain 

p. = - 0.002800908; p, = 0.326662423; 

q. = -0.043883564; q1 = 0.3989422; 

PO = - 0.007232251; P, = - 0.044567423 

Q. = -0.013883003; Q, = - 0.3989422. 

From these values we can compute the approximations. 
Both curves are coincident in the scale drawing. In Fig. 1 b 
and 2 we compare the absolute errors of our approxima- 
tions (full line) with those obtained from the WKB method 
(dashed line) and from the partial power series (point-dash 
line). In Fig. lc we show the relative error of the preceding 
functions (for positive x). Since in the negative side the Airy 
function has zeros, the relative errors would become infinite 
at them. Therefore plotting relative errors is not suitable. 
The WKB method (leading term of the asymptotic expan- 
sion) clearly fails in the region 1x1 < 1.2. Similarly, the 
partial power series fails for values such that 1x1 > 0.8. The 
accuracy of the function is fairly high for small and large 
values of x. The largest errors occur around x 2 + 1; their 
values are 0.003 (1% ) at x = - 1.9 and x = 0.25. 

IV. DISCUSSION 

The two-point quasifractional method can be extended to 
some functions-as Airy’s-by using suitable independent 
variables (e.g., z = Jm) in the fractional part of 
the quasifractional approximation. The forms of the 
approximation are, in the Airy case, different for the 
negative axis than for the positive one, due to the Stokes 
phenomenon. These forms have been determined by 
considering asymptotic expansions. In this paper the 
parameters of the denominator are fixed beforehand, avoid- 
ing undesirable zeros in the denominator. The simplest 
approximation is obtained with a first-degree polynomial 
combined with exponential and trigonometric functions. 
The accuracy is high for such simple approximations and no 
difference with the exact function can be noted in standard 
size plotting. More than two decimal place accuracy is 
obtained for all the real range of the variable. The accuracy 
for very small and very large values of x is much better 
(three, four, and even more decimal places). The largest 
error is 0.003 (1 %) at x = - 1.9 and x = 0.25. 
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